organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Thamotharan,^a V. Parthasarathi,^b* G. Anandha Babu,^b Raveendra K. Hunnur,^c Bharati Badami^c and Anthony Linden^d

^aMolecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, ^bSchool of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ^cPost-Graduate Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India, and ^dInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study T = 160 KMean σ (C–C) = 0.006 Å R factor = 0.047 wR factor = 0.105 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Phenoxymethyl-1,3,4-oxadiazole-2(3H)-thione

In the title compound, $C_9H_8N_2O_2S$, the H atom of the thiol group has been transferred to the neighbouring N atom of the oxadiazole ring. Intermolecular $N-H\cdots N$ hydrogen bonds exist between adjacent molecules.

Received 10 October 2005 Accepted 14 October 2005 Online 19 October 2005

Comment

It is well known that 1,3,4-oxadiazole-2-thione derivatives show a broad spectrum of biological activities (Ram & Vlietinck, 1988; Boschelli *et al.*, 1993). A view of the title compound, (I), with the atomic numbering scheme, is shown in Fig. 1. The dihedral angle between the mean planes of the benzene and 1,3,4-oxadiazole rings is 14.4 (1)°. In (I), the bond lengths and angles are in good agreement with the expected values (Allen *et al.*, 1987). The H atom of the thiol group has been transferred to the adjacent N atom of the oxadiazole ring. The N3–N4 [1.383 (5) Å] and C2=S2 [1.647 (4) Å] bond lengths correspond to the usual single N–N and double C=S distances.

The crystal structure of (I) is shown in Fig. 2. In the solid state, atom N3 is involved in an intermolecular $N-H\cdots N$ hydrogen bond with atom N4 of the oxadiazole group of an adjacent molecule (Table 1). This hydrogen bond links the molecules into chains, which run parallel to the [010] direction and can be described by a C(3) graph-set motif (Bernstein *et al.*, 1995). Atom C6 (*via* H61) acts as a donor for a weak

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

intermolecular C–H···O interaction with atom O1 of a symmetry-related molecule. This weak interaction connects the molecules into chains, which also run parallel to the [010] direction and can be described by a graph-set motif of C(4). In addition, atom C6 (*via* H62) is involved in an intermolecular C–H··· π interaction with the benzene ring of a neighbouring molecule [H62···Cg = 2.71 Å, C6···Cg = 3.459 (4) Å and C6–H61··· $Cg = 132^{\circ}$, where Cg is the centroid of the benzene ring at (x, y - 1, z)].

Experimental

A solution of phenoxyacetic acid hydrazide (0.01 mol) was dissolved in pyridine (10 ml), and carbon disulfide (5 ml) was added with constant stirring. Stirring was continued for 36 h at room temperature. The reaction mixture was then poured into ice-cold water and acidified with dilute HCl. The solid, (I), separated, was filtered off and crystallized from dimethylformamide (m.p. 457–459 K).

> $D_x = 1.470 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 21914

reflections $\theta = 2.0-25.0^{\circ}$

 $\mu = 0.32 \text{ mm}^{-1}$

T = 160 (2) K

Needle, colourless

 $0.35 \times 0.10 \times 0.02 \text{ mm}$

Crystal data

$C_9H_8N_2O_2S$
$M_r = 208.23$
Monoclinic, P21
a = 9.3233 (8) Å
b = 4.9446 (5) Å
c = 10.2051 (10) Å
$\beta = 91.388 \ (5)^{\circ}$
V = 470.32 (8) Å ³
Z = 2

Data collection

Nonius KappaCCD area-detector	1553 independent reflections
diffractometer	1295 reflections with $I > 2\sigma(I)$
φ and ω scans with κ offsets	$R_{\rm int} = 0.083$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SORTAV; Blessing, 1995)	$h = -11 \rightarrow 11$
$T_{\min} = 0.676, T_{\max} = 0.999$	$k = -5 \rightarrow 5$
6143 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0334P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 0.2737P]
$wR(F^2) = 0.105$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
1553 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack &
independent and constrained	Bernardinelli (1999, 2000), 636
refinement	Friedel pairs
	Flack parameter: 0.01 (14)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots A$
N3-H3···N4 ⁱ	0.87 (5)	2.24 (4)	2.899 (5)	132 (3)
C6-H61···O1 ⁱⁱ	0.99	2.53	3.416 (4)	148

The position of the amine H atom was determined from a difference Fourier map and refined freely along with its isotropic displacement parameter. All remaining H atoms were placed in geometrically idealized positions and were constrained to ride on

Crystal structure of (I), as projected on to the *ac* plane. $N-H\cdots N$ and $C-H\cdots O$ bonds are indicated by dashed lines. H atoms have been omitted.

their parent atoms, with C–H distances in the range 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Boschelli, D. H., Connor, D. T., Bornemeier, D. A., Dyer, R. D., Kennedy, J. A., Kuipers, P. J., Okonkwo, G. C., Schrier, D. J. & Wright, C. D. (1993). *J. Med. Chem.* 36, 1802–1810.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ram, V. J. & Vlietinck, A. J. (1988). J. Heterocycl. Chem. 25, 253-256.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.